CHAPTER 7 HYDRAULIC ACTUATORS

Figure 7-1 Ram Cylinder

Figure 7-2 Single acting telescope cylinder

Figure 7-3 Basic double acting cylinder

Figure 7-4 Double rod cylinder

Figure 7-5 Tandem cylinder

Figure 7-6 Typical cylinder construction

Figure 7-7 Rod seal and wiper design

Figure 7-8 Metal sealing rings

Figure 7-9 Pressure tightens the seal to improve sealing

Figure 7-10 Cylinder mounting methods COPYRIGHT © (2001) EATON CORPORATION

Figure 7-10 Cylinder mounting methods COPYRIGHT (C) (2001) EATON CORPORATION

Trunnion Mounts

Figure 7-10 Cylinder mounting methods COPYRIGHT © (2001) EATON CORPORATION

Change	Speed	Load Pressure	Max Force
Increase relief valve setting	No effect	No effect No effect	
Decrease relief valve setting	No effect	No effect	Decrease
Increase gpm	Increase	No effect	No effect
Decrease gpm	Decrease	No effect	No effect
Increase cylinder diameter	Decrease	Decrease	Increase
Decrease cylinder diameter	Increase	Increase	Decrease

Table 7-1 Summary of effects of application changes on cylinder performance COPYRIGHT © (2001) EATON CORPORATION

Cyl. Bore Dia. Inch	Piston Rod Dia. Inch	Work Area Square Inch	Hydraulic Working Pressure PSI					Fluid Required per In of Stroke		Port Size	Fluid Velocity @ 15 ft/sec		
			500	750	1000	1500	2000	3000	Gal.	Cubic Inch	Dia Inch	Flow gpm	Piston Velocity in/sec
1-	5/8 1	1.767 1.460 .982	883 730 491	1325 1095 736	1767 1460 982	2651 2190 1473	3534 2920 1964	5301 4380 2946	.00765 .00632 .00425	1.767 1.460 .982	1/2	11.0	24.0 29.0 43.1
2	1 1 3/8	3.141 2.356 1.656	1571 1178 828	2356 1767 1242	3141 2356 1656	4711 3534 2484	6283 4712 3312	9423 7068 4968	.01360 .01020 .00717	3.141 2.356 1.656	1/2	11.0	13.5 18.0 25.6
2-	1 1 3/8 1	4.909 4.124 3.424 2.504	2454 2062 1712 1252	3682 3093 2568 1878	4909 4124 3424 2504	7363 6186 5136 3756	9818 8248 6848 5008	14727 12372 10272 7512	.02125 .01785 .01482 .01084	4.909 4.124 3.424 2.504	1/2	11.0	8.6 10.3 12.4 16.9
3-	1 3/8 1 2	8.296 6.811 5.891 5.154	4148 3405 2945 2577	6222 5108 4418 3865	8296 6811 5891 5154	12444 10216 8836 7731	16592 13622 11782 10308	24888 20433 17673 15462	.0359 .0295 .0255 .0223	8.296 6.811 5.891 5.154	3/4	20.3	9.4 11.5 13.3 15.2
4	1 2 2	12.566 10.161 9.424 7.657	6283 5080 4712 3828	9425 7621 7068 5743	12566 10161 9424 7657	18849 15241 14136 11485	25132 20322 18848 15314	37698 30483 28272 229781	.0544 .0440 .0408 .0331	12.566 10.161 9.424 7.657	3/4	20.3	6.2 7.7 8.3 10.2

Table 7-2 Data for various size cylinders COPYRIGHT © (2001) EATON CORPORATION

Figure 7-11 Cylinder with extension and retraction cushions

Figure 7-12 Rod end cushion during cylinder extension

Figure 7-13 A stop tube provides better cylinder rod support

Center Support Tie Rod Spacer

Figure 7-14 Tie rod spacer and center support

Figure 7-15 Cylinder with limit switches

Figure 7-16 Displacement is the quantity of fluid that effects one shaft revolution

Figure 7-17 Torque equals load multiplied by radius

Figure 7-18 Hydraulic motor torque formula

Figure 7-19 Hydraulic motor speed formula

Figure 7-20 Hydraulic motor horsepower formula

Change	Speed	Load Pressure	Max Torque
Increase relief valve setting	No effect	No effect	Increase
Decrease relief valve setting	No effect	No effect	Decrease
Increase gpm	Increase	No effect	No effect
Decrease gpm	Decrease	No effect	No effect
Increase displacement cir	Decrease	Decrease	Increase
Decrease displacement cir	Increase	Increase	Decrease

Table 7-3 Summary of effects of application changes on motor operations COPYRIGHT © (2001) EATON CORPORATION

Figure 7-21 Torque generation in an external gear motor

Figure 7-22 Cross section of a direct drive gerotor motor

Figure 7-23 Sequence of direct drive gerotor motor

COPYRIGHT © (2001) VICKERS, INCORPORATED

Figure 7-24 An orbiting gerotor motor

Figure 7-25 Sequence of an orbiting gerotor motor

Figure 7.26 Roller-vane gerotor motor

Figure 7-27 Cross section of a balanced vane motor rotating group

Figure 7-28 Springs or spring clips keep the vanes against the cam

Figure 7-29 Pressure acting on a vane creates torque on the drive shaft COPYRIGHT © (2001) EATON CORPORATION

Figure 7-30 High performance vane motor cartridge design

Figure 7-31 Fixed displacement in-line piston motor

Figure 7-32 Swash plate angle determines the torque and speed relationship

Figure 7-33 Variable displacement in-line piston motor

Figure 7-34 Radial piston motor

Figure 7-35 Inlet and outlet porting in a radial piston motor

Figure 7-36 Variable displacement radial piston motor

Figure 7-37 Bent axis piston motor

Figure 7-38 Variable displacement bent axis piston motor

Figure 7-39 Limited rotation actuator

