CHAPTER 7 HYDRAULIC ACTUATORS Figure 7-1 Ram Cylinder Figure 7-2 Single acting telescope cylinder Figure 7-3 Basic double acting cylinder Figure 7-4 Double rod cylinder Figure 7-5 Tandem cylinder Figure 7-6 Typical cylinder construction Figure 7-7 Rod seal and wiper design Figure 7-8 Metal sealing rings Figure 7-9 Pressure tightens the seal to improve sealing Figure 7-10 Cylinder mounting methods COPYRIGHT © (2001) EATON CORPORATION Figure 7-10 Cylinder mounting methods COPYRIGHT (C) (2001) EATON CORPORATION ## **Trunnion Mounts** Figure 7-10 Cylinder mounting methods COPYRIGHT © (2001) EATON CORPORATION | Change | Speed | Load Pressure | Max Force | |-------------------------------|-----------|---------------------|-----------| | Increase relief valve setting | No effect | No effect No effect | | | Decrease relief valve setting | No effect | No effect | Decrease | | Increase gpm | Increase | No effect | No effect | | Decrease gpm | Decrease | No effect | No effect | | Increase cylinder diameter | Decrease | Decrease | Increase | | Decrease cylinder diameter | Increase | Increase | Decrease | Table 7-1 Summary of effects of application changes on cylinder performance COPYRIGHT © (2001) EATON CORPORATION | Cyl.
Bore
Dia.
Inch | Piston
Rod
Dia.
Inch | Work
Area
Square
Inch | Hydraulic Working Pressure PSI | | | | | Fluid Required per In of Stroke | | Port
Size | Fluid Velocity @ 15 ft/sec | | | |------------------------------|-------------------------------|------------------------------------|--------------------------------|------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------------------|--------------------------------------|------------------------------------|----------------------------|-------------|------------------------------| | | | | 500 | 750 | 1000 | 1500 | 2000 | 3000 | Gal. | Cubic
Inch | Dia
Inch | Flow
gpm | Piston
Velocity
in/sec | | 1- | 5/8
1 | 1.767
1.460
.982 | 883
730
491 | 1325
1095
736 | 1767
1460
982 | 2651
2190
1473 | 3534
2920
1964 | 5301
4380
2946 | .00765
.00632
.00425 | 1.767
1.460
.982 | 1/2 | 11.0 | 24.0
29.0
43.1 | | 2 | 1
1 3/8 | 3.141
2.356
1.656 | 1571
1178
828 | 2356
1767
1242 | 3141
2356
1656 | 4711
3534
2484 | 6283
4712
3312 | 9423
7068
4968 | .01360
.01020
.00717 | 3.141
2.356
1.656 | 1/2 | 11.0 | 13.5
18.0
25.6 | | 2- | 1
1 3/8
1 | 4.909
4.124
3.424
2.504 | 2454
2062
1712
1252 | 3682
3093
2568
1878 | 4909
4124
3424
2504 | 7363
6186
5136
3756 | 9818
8248
6848
5008 | 14727
12372
10272
7512 | .02125
.01785
.01482
.01084 | 4.909
4.124
3.424
2.504 | 1/2 | 11.0 | 8.6
10.3
12.4
16.9 | | 3- | 1 3/8
1
2 | 8.296
6.811
5.891
5.154 | 4148
3405
2945
2577 | 6222
5108
4418
3865 | 8296
6811
5891
5154 | 12444
10216
8836
7731 | 16592
13622
11782
10308 | 24888
20433
17673
15462 | .0359
.0295
.0255
.0223 | 8.296
6.811
5.891
5.154 | 3/4 | 20.3 | 9.4
11.5
13.3
15.2 | | 4 | 1
2
2 | 12.566
10.161
9.424
7.657 | 6283
5080
4712
3828 | 9425
7621
7068
5743 | 12566
10161
9424
7657 | 18849
15241
14136
11485 | 25132
20322
18848
15314 | 37698
30483
28272
229781 | .0544
.0440
.0408
.0331 | 12.566
10.161
9.424
7.657 | 3/4 | 20.3 | 6.2
7.7
8.3
10.2 | Table 7-2 Data for various size cylinders COPYRIGHT © (2001) EATON CORPORATION Figure 7-11 Cylinder with extension and retraction cushions Figure 7-12 Rod end cushion during cylinder extension Figure 7-13 A stop tube provides better cylinder rod support ## Center Support Tie Rod Spacer Figure 7-14 Tie rod spacer and center support Figure 7-15 Cylinder with limit switches Figure 7-16 Displacement is the quantity of fluid that effects one shaft revolution Figure 7-17 Torque equals load multiplied by radius Figure 7-18 Hydraulic motor torque formula Figure 7-19 Hydraulic motor speed formula Figure 7-20 Hydraulic motor horsepower formula | Change | Speed | Load Pressure | Max Torque | |-------------------------------|-----------|---------------|------------| | Increase relief valve setting | No effect | No effect | Increase | | Decrease relief valve setting | No effect | No effect | Decrease | | Increase gpm | Increase | No effect | No effect | | Decrease gpm | Decrease | No effect | No effect | | Increase displacement cir | Decrease | Decrease | Increase | | Decrease displacement cir | Increase | Increase | Decrease | Table 7-3 Summary of effects of application changes on motor operations COPYRIGHT © (2001) EATON CORPORATION Figure 7-21 Torque generation in an external gear motor Figure 7-22 Cross section of a direct drive gerotor motor Figure 7-23 Sequence of direct drive gerotor motor COPYRIGHT © (2001) VICKERS, INCORPORATED Figure 7-24 An orbiting gerotor motor Figure 7-25 Sequence of an orbiting gerotor motor Figure 7.26 Roller-vane gerotor motor Figure 7-27 Cross section of a balanced vane motor rotating group Figure 7-28 Springs or spring clips keep the vanes against the cam Figure 7-29 Pressure acting on a vane creates torque on the drive shaft COPYRIGHT © (2001) EATON CORPORATION Figure 7-30 High performance vane motor cartridge design Figure 7-31 Fixed displacement in-line piston motor Figure 7-32 Swash plate angle determines the torque and speed relationship Figure 7-33 Variable displacement in-line piston motor Figure 7-34 Radial piston motor Figure 7-35 Inlet and outlet porting in a radial piston motor Figure 7-36 Variable displacement radial piston motor Figure 7-37 Bent axis piston motor Figure 7-38 Variable displacement bent axis piston motor Figure 7-39 Limited rotation actuator