CHAPTER 9

BASIC ELECTRICAL PRINCIPLES AND OPERATIONAL AMPLIFIERS

<u> </u>	27			
Conductor, Connected	+	Resistor, Variable	OR	
Conductors, Not Connected	+++	Solenoid Coil, Iron Core		
Battery, Dry Cell or DC Source	* \(\press{+} \\ \frac{+}{=} \\ \frac{+}{T} \end{align*}	Relay	Common N.C. N.O.	
AC Source		Relay Contacts	N.O. ⊣ ⊢ → ⊬ N.C.	
AC Power Plug	w₩.do	Transformer, Iron Core	Primary 33 Secondary	
Fuse	- ~ -	Diode	Cathode — Anode	

Figure 9-1 Common electrical schematic symbols

8		3		
Lamp		Ammeter	- —A— +	
Switch Single Pole, Single Throw	SPST —	Voltmeter		
Switch Single Pole, Double Throw	SPDT	Ohmmeter		
Capacitor	apacitor		<u> </u>	
Resistor, Fixed		Chassis Ground) M/	
Resistor, Tapped				

Figure 9-1 Common electrical schematic symbols (cont)

ELECTRICAL		HYDRAULIC		
Resistor		Restriction		
Power Supply	- +	Pump		
Capacitor		Double Spring Loaded Piston or Accumulator		
Switch		Directional Valve	M W	
Diode		Check Valve		
Transformer		Intensifier	C bin	
Ground	= =	Tank		
			Vickers	

Figure 9-2 Functional equivalence of electrical and hydraulic components

Figure 9-3 Comparison of simple hydraulic and electrical circuits

Like Charges Repel

Unlike Charges Attract

Figure 9-4 The law of electrical charges

Figure 9-5 Conventional current flow

A. Current Flows in a Closed Circuit

Figure 9-6 Closed and open circuits

B. Current Cannot Flow in an Open Circuit

Figure 9-6 Closed and open circuits

Figure 9-7 Battery as a power source

Figure 9-8 DC and AC waveforms

Figure 9-9 Fixed and variable resistors

Figure 9-10 Analog meter

Figure 9-11 Digital meter

Figure 9-12 Series connection of ammeter

A. Voltmeter Measuring A Voltage Drop

Voltmeter connected in parallel with circuit by touching test leads to each side of component. Meter reads voltage drop if current flows in circuit

B. Voltmeter Measuring A Voltage Rise

Voltmeter measures voltage rise even though no current is flowing in circuit. Voltmeter provides a path across positive and negative terminals of power source

Figure 9-13 Voltmeter measuring voltage drop and voltage rise

Voltmeter cannot measure voltage drop if current is not flowing in the circuit

Figure 9-14 Voltmeter across component with no current flowing COPYRIGHT © (2001) EATON CORPORATION

After zero adjusting the meter and connecting the component between the test probes, the meter pointer indicates 12 on the Ohms scale. Since the range switch is set to R x 1, the resistance equals 12 x 1 = 12 Ohms

In this measurement, the meter pointer indicates 12, but the range switch is set to R x 100. The resistance being measured equals 12 x 100 = 1200 Ohms

Figure 9-15 Ohmmeter measurements

When connecting an ohmmeter across a component (R2) a false reading will be obtained if the component is not disconnected from the circuit. When the ohmmeter is connected as shown, meter current can flow through both R2 and R₁. The measurement will be a combination of R₁ and R₂ values resulting in a false reading - lower than expected

When the component to be measured with the ohmmeter is disconnected from the circuit, meter current has only one path it can follow. This allows a true measurement of the component with the ohmmeter

Figure 9-16 False ohmmeter readings

Figure 9-17 Ohm担 law proof

CIRCUIT	DEFINITION	UNIT OF MEASUREMENT	UNIT SYMBOL	MEASURED WITH	FUNCTION SWITCH POSITION	OHM拚 OR WATT拚 LAW
Current	The flow of electrons from + to - around a circuit	Amperes (amps)	A	Ammeter	ACmA or DCmA	$I = E / R$ $I = P / E$ $I = \sqrt{P/R}$
Voltage (EMF)	The force which causes current to flow	Volts	V	Voltmeter	ACV or DCV	$E = I \times P$ $E = P / I$ $E = \sqrt{P/R}$
Resistance	The opposition to current flow	Ohms	w	Ohmmeter	Ohms	$R = E/I$ $R = E^2/P$ $R = P/I^2$
Power	The rate of doing electrical work	Watts	w	Wattmeter or Calculated	N/A	$P = I \times E$ $P = I^{2}R$ $P = E^{2}/R$

Figure 9-18 Electrical circuit element summary chart

Figure 9-19 Potentiometer operation

Figure 9-20 Potentiometer with series dropping resistor

Figure 9-21 Magnetic field around solenoid coil

Figure 9-22 Air gap solenoid construction

Figure 9-23 Wet armature solenoid construction

Figure 9-24 Simple relay circuit

Figure 9-25 Relay controlling two input voltages

Figure 9-26 Iron core transformer

Figure 9-27 Transformer types

Figure 9-28 Semiconductor diode

A. Half wave Rectifier Circuit - Positive Pulsating DC Output

B. Half wave Rectifier Circuit - Negative Pulsating DC Output

Figure 9-29 Half wave rectifier circuits

Figure 9-30 Full wave rectifier circuit operation

Figure 9-31 Capacitor used as filter for rectifier circuit

Figure 9-32 Significance of zero reference point

Figure 9-33 Testing for inadvertent connection of earth ground and chassis ground COPYRIGHT © (2001) EATON CORPORATION

Figure 9-34 Common types of conductors

B. Relationship between Wire Size and Gauge Number

C. American Wire Gauge (AWG)

Figure 9-35 Wire gauge numbers - characteristics and measurements

A Wire Gauge Numbers and Characteristics

Gauge Number	Diameter (mils)	Area	Ohmsper 1000 ft	Gauge Number	Diameter (mils)	Area	Ohmsper 1000 ft
\$84.586.004.007.855.1111.11 T. 1910.	, * c. 200.000 *	Circular mils	25 deg C. Mils			Circular mils	25 deg. C mils
0000	460.0	212,000.0	0.0500	19	36.0	1,290.0	8.21
000	410.0	168,000.0	.0630	20	32.0	1,020.0	10.4
00	365.0	133,000.0	.0795	21	28.5	810.0	13.1
0	325.0	106,000.0	.100	22	25.3	642.0	16.5
1	289.0	87,700.0	.126	23	22.6	509.0	20.8
2	258.0	66,400.0	.159	24	20.1	404.0	26.2
3	229.0	52,600.0	.201	25	17.9	320.0	33.0
4	204.0	41,700.0	.253	26	15.9	254.0	41.6
5	182.0	33,100.0	.319	27	14.2	202.0	52.5
6	162.0	26,300.0	.403	28	12.6	160.0	66.2
7	144.0	20,800.0	.508	29	11.3	127.0	83.4
8	128.0	16,500.0	.641	30	10.0	101.0	105.0
9	114.0	13,100.0	.808	31	8.9	79.7	133.0
10	102.0	10,400.0	1.02	32	8.0	63.2	167.0
11	91.0	8,230.0	1.28	33	7.1	50.1	211.0
12	81.0	6,530.0	1.62	34	6.3	39.8	266.0
13	72.0	5,180.0	2.04	35	5.6	31.5	335.0
14	64.0	4,110.0	2.58	36	5.0	25.0	423.0
15	57.0	3,260.0	3.25	37	4.5	19.8	533.0
16	51.0	2,580.0	4.09	38	4.0	15.7	673.0
17	45.0	2,050.0	5.16	39	3.6	12.5	848.0
18	40.0	1,620.0	6.51	40	3.1	9.9	1,070.0

Figure 9.35A Wire Gauge Numbers and Characteristics

COPYRIGHT @ (1999) VICKERS, INCORPORATED

A. Nonmetallic sheathed cable		Type NM - 12-2	
B. Armored cable consists of two or more insulated wires protected by a flexible metal cover	Insulated Wires		Metal Flexible Cover
C. Flexible cord is very tough and durable	/ d		VICKERS

Figure 9-36 Types of cable

WIRE SIZE	In conduit, cable, or buried directly in the earth		Single conductors in free air			
	Types T, TW	T, TW Types RH RHW, THW	Types T, TW	Types RH RHW, THW	Weatherproof	
	A	В	С	D	E	
14	15	15	20	20	30	
12	20	20	25	25	40	
10	30	30	40	40	55	
8	40	45	55	65	70	
6	55	65	80	95	100	
4	70	85	105	125	130	
2	95	155	140	170	175	
1/0	125	150	195	230	235	
2/0	165	175	225	265	275	
3/0	195	200	260	310	320	

Figure 9-37 Ampacity of copper wires

Figure 9-38 Functional block diagram of input device, amplifier and output device

Figure 9-39 Schematic symbol and characteristics for a transistor

Figure 9-40 Amplifier circuit

Figure 9-41 Stages of amplification

Figure 9-42 Schematic symbol for an amplifier card COPYRIGHT © (2001) EATON CORPORATION

Figure 9-43 Amplifier with grounded input terminal for zero reference COPYRIGHT © (2001) EATON CORPORATION

Figure 9-44 Basic operational amplifier

Figure 9-45 Typical Op Amp connections

Figure 9-46 Typical Op Amp with voltage applied to input

Figure 9-47 Example inverting amplifier circuit

Figure 9-48 Op Amp with variable gain

Figure 9-49 Op Amp with two inputs at the summing junction

Figure 9-50 Pressure control circuit with op Amp including input potentiometer

Figure 9-51 Potentiometer as a voltage divider

Figure 9-52 Linear relationship between wiper position and wiper voltage COPYRIGHT © (2001) EATON CORPORATION

Figure 9-53 Potentiometer shown as two series resistor

III

Figure 9-54 Potentiometer used to vary the input voltage

Figure 9-55 Nonlinear relationship between wiper position and wiper voltage

Figure 9-56 Circuit for converting a current signal to a voltage signal COPYRIGHT © (2001) EATON CORPORATION

VICKERS

Figure 9-57 Typical industrial amplifier control module

